

CON1D Mold Geometry Calibration: "Offset Method"

Inwho Hwang (BSME Student) Lance C. Hibbeler (Ph.D. Student)

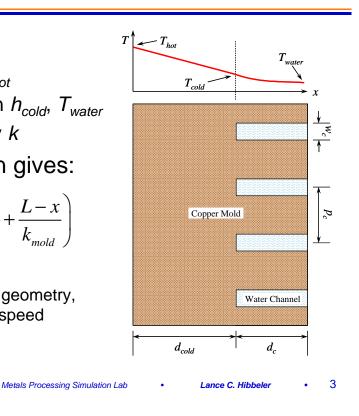
Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Introduction

- The simplified mold geometry in CON1D can be calibrated using analytical techniques and heat transfer FEM models to provide increased accuracy at practically no cost
- This calibration has been automated using a Python script and ABAQUS

A stinuous Casting Consortium

CON1D's 1D Mold Model


Given

University of Illinois at Urbana-Champaign

- Hot face heat flux q_{hot}
- Cold face convection h_{cold} , T_{water}
- Thermal conductivity k
- Conduction equation gives:

$$T = T_{water} + q_{hot} \left(\frac{1}{h_{cold}} + \frac{L - x}{k_{mold}} \right)$$

*h*_{cold} is a function of channel geometry, water properties, and water speed

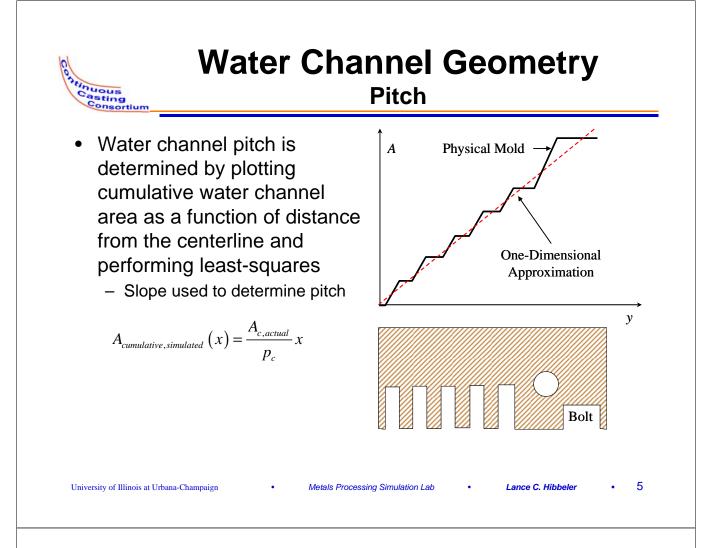
Water Channel Geometry Width and Depth

- The simulated rectangular channels and the actual water channels must have identical
 - Cross-sectional area: correct amount of water

$$w_c d_c = A_{c,actual}$$

- Hydraulic diameter: correct convection behavior

 $2w_c d_c / (w_c + d_c) = D_{h,actual}$


• Two equations and two variables, solved:

$$v_{c}, d_{c} = A_{c,actual} / D_{h,actual} \pm \sqrt{\left(A_{c,actual} / D_{h,actual}\right)^{2} - A_{c,actual}}$$

Use average A_c and D_h for the mold

٦

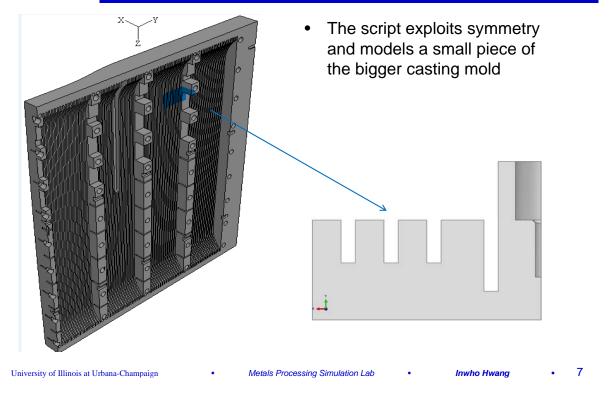
4

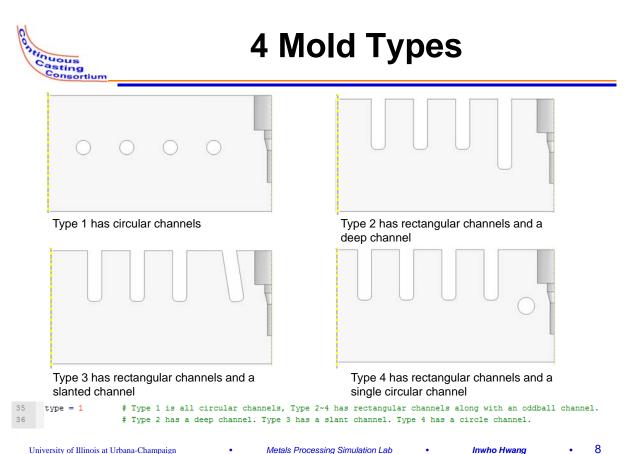
Calibrating for 3D Effects

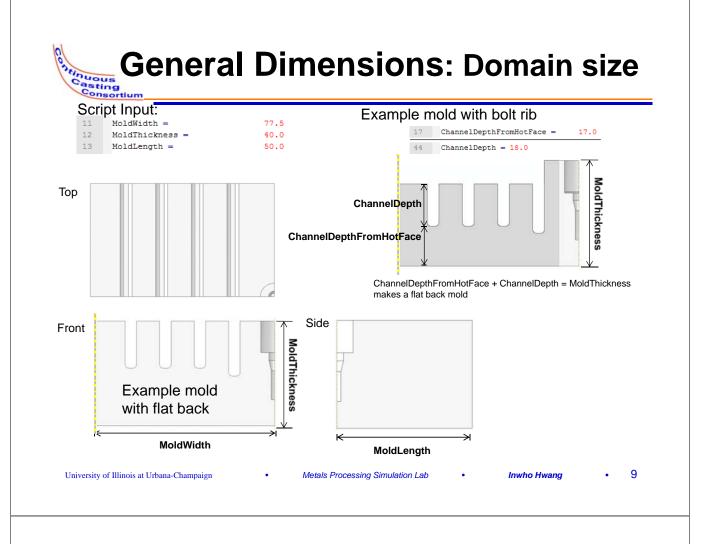
- The accuracy of a 3D finite-element model can be given to CON1D by calibrating the mold thickness and thermocouple locations
- Manipulating 1D temperature solution gives
 - Calibrated cold face position

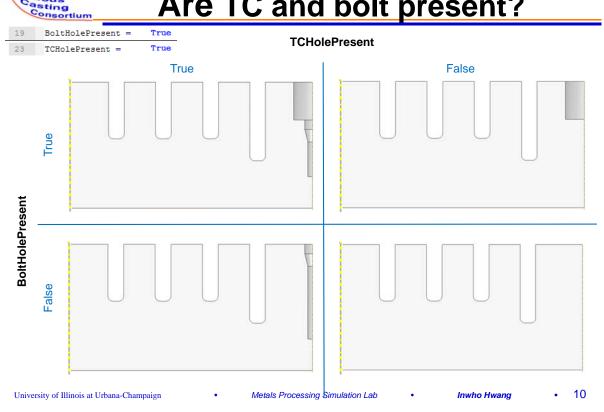
$$d'_{cold} = \frac{k}{q} \left(\underline{T_{hot,3D}} - \underline{T_{cold,3D}} \right)$$

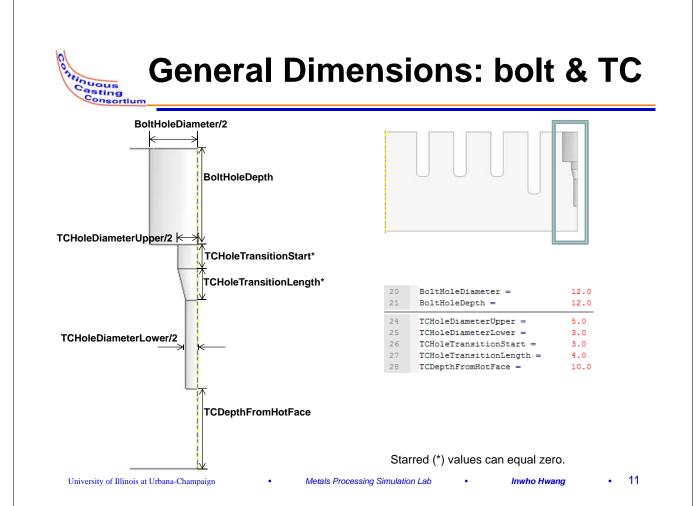
- Calibrated thermocouple position


$$d'_{TC} = \frac{k}{q} \left(\underline{T_{hot,3D}} - \underline{T_{TC,3D}} \right)$$

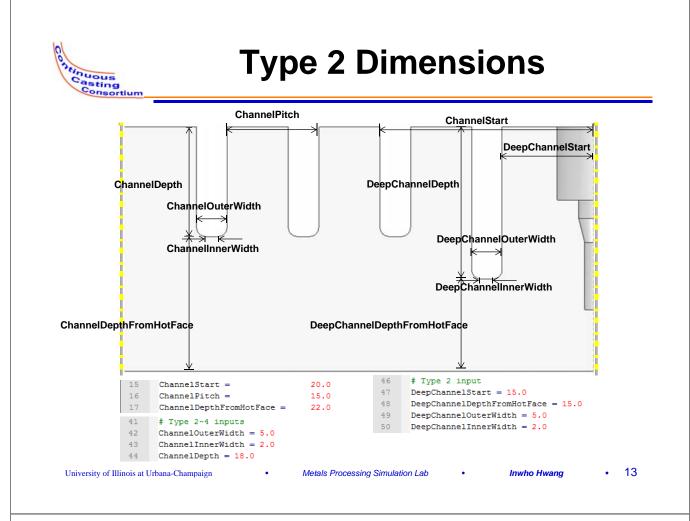

Underlined terms taken from 3D FE model; k and q must match model

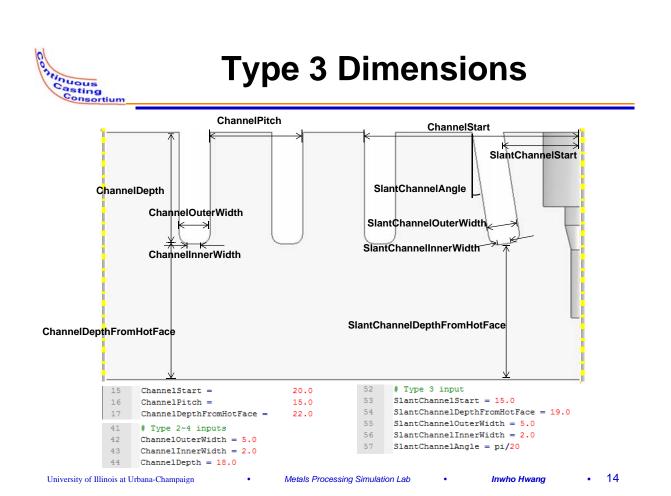

nuous

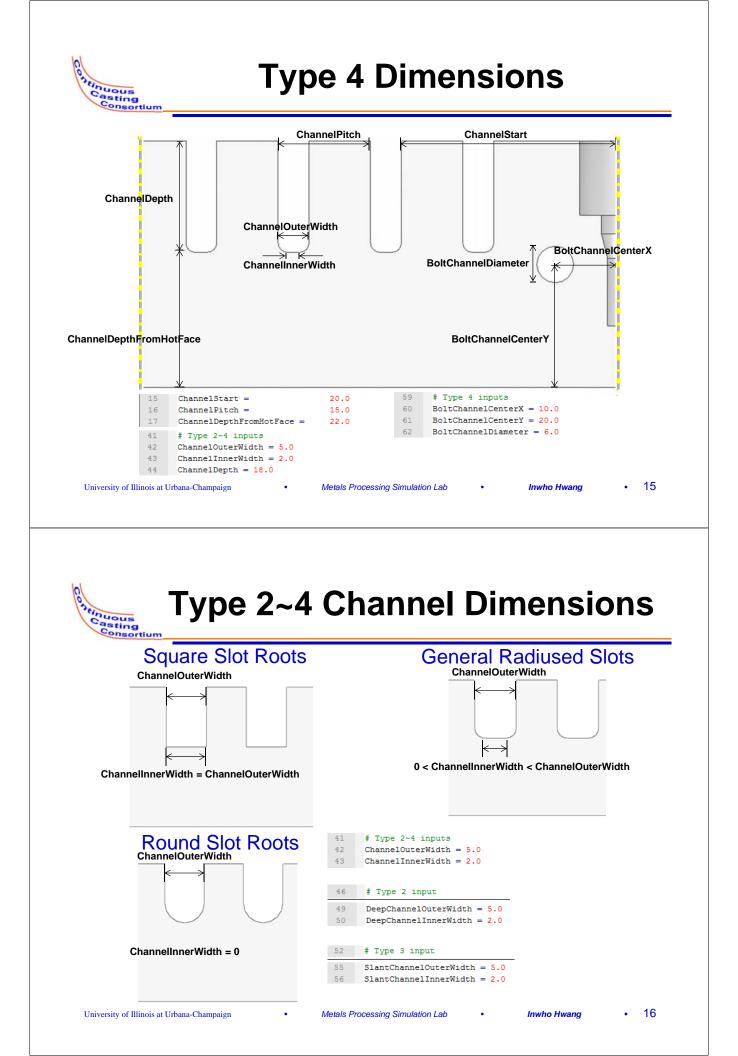

3D Mold Model






General Dimensions: Are TC and bolt present?





Type 1 Dimensions

Odd vs Even Number of Slots

Odd		Even
HalfChannel = True	lf channel / Does your n	False mold have an odd number of channels between bolt holes? [True or F HalfChannel me symmetry line cuts the last channel in half, make
versity of Illinois at Urbana-Champaign		rocessing Simulation Lab • Inwho Hwang • 1
Inpussion Sector		: echo to screen?
# Would you like the in EchoInput = True	nput values printed = Corus = 106.25	
<pre># Would you like the in EchoInput = True Echoing Input Values ModelName MoldWidth MoldThickness MoldUength ChannelPitch ChannelPitch ChannelPitch ChannelPitch ChannelPitch ChannelPitch ChannelPitch ChannelPitch</pre>	= Corus = 106.25 = 55.5 = 87.5 = 18.75 = 10.0 = 20.0 = 22.0	Example 2 Solution Solution
<pre># Would you like the in Echoing Input Values ModelName ModelName MoldWidth MoldEngth ChannelStart ChannelPethFromHotFace BoltHoleDiameter BoltHoleDiameterLower TCHoleDiameterLower TCHoleDiameterLower TCHoleTransitionStart TCHoleTransitionLength TCDepthFromHotFace</pre>	= Corus = 106.25 = 55.5 = 87.5 = 18.75 = 10.0 = 20.0 = 20.0 = 20.5 = 6.0 = 4.0 = 0.0	Example 2 Solution Solution
<pre># Would you like the in EchoInput = True Echoing Input Values ModelName MoldWidth MoldThickness MoldLength ChannelStart ChannelPitch ChannelPitch ChannelPitch ChannelPitch TCHoleDiameterUpper TCHoleDiameterLower TCHoleTransitionStart</pre>	= Corus = 106.25 = 55.5 = 87.5 = 18.75 = 10.0 = 20.0 = 20.0 = 20.5 = 6.0 = 4.0 = 0.0	Example 2 Solution Solution

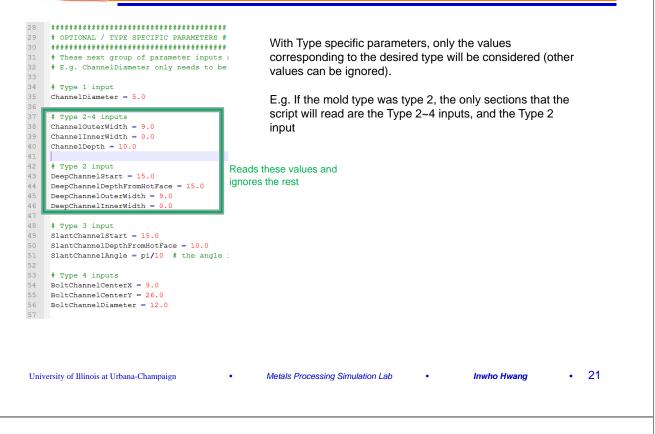
tinuous

•

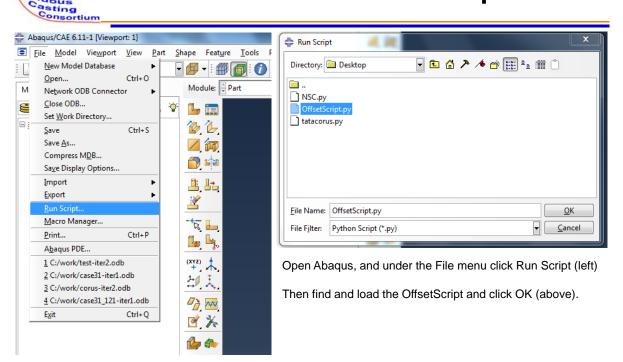
Execution: Input data into script

			Open the Offset Python File in
1	# OffsetScript		a text editor. (Notepad++ is
			a ioni cuitor. (Notepau \pm 15
		s to match the mold geometry	fan e en el la la la la constante de la D
		as" to create scripts with preloaded molds.	free and highly recommended)
	· once complete, run Abaqui	s, Run Script (under File or the open pop up) and select this Script to run it.	
	# TYPE-INDEPENDENT PARAMETE	E83 \$	
	ModelName =	'test'\$ Casename must be 9 characters or less	
	MoldWidth =	77.5	Incart the mold geometry by
	MoldWidth = MoldThickness =	45.0	Insert the mold geometry by
	MoldLength =	50.0	v
			editing the values
	ChannelStart -	30.0	
	ChannelPitch =	15.0	corresponding to the
	ChannelDepthFromHotFace =	17.0	corresponding to the
	No.1 a Mola Province a	The A first ways wild have a hold hold? [These or Balan]	
	BoltHolePresent = BoltHoleDiameter =	True # Does your mold have a bolt hole? [True or False] 12.0	dimensions shown in the
	BoltHoleDepth =	18.0	
	and the second		schematics
	TCHolePresent -	True # Does your mold have a thermocouple hole? [True or False]	SCHEMALICS
	TCHoleDiameterUpper =	1.5	
	TCHoleDiameterLower =	1.5	
	TCHoleTransitionStart = TCHoleTransitionLength =	0.0	
	TCDepthFromHotFace =	22.0	
		(Photos)	
	I TYPE SPECIFIC PARAMETERS		
		all circular channels, Type 2~4 has rectangular channels along with an oddball channel.	
		as a deep channel. Type 3 has a slant channel. Type 4 has a circle channel.	
	# Type 1 input		
	ChannelDiameter = 5.0		
	# Type 2~4 inputs		
	ChannelOuterWidth = 5.0		
	ChannelInnerWidth = 2.0		
ŝ	£	length:67471 lines:1577 i.n:71 Col:1 Sel:0 UNEX	
1			
file	ChannelOuterWidth = 5:0 ChannelInnerWidth = 2:0	length:6903 lines:1577 Let 71 Cel:1 Sel:0 URX	

12	ChannelStart =	30.0	15	ChannelStart =	30.0
13	ChannelPitch =	15.0	16	ChannelPitch =	15.0
14	ChannelDepthFromHotFace =	20.0	17	ChannelDepthFromHotFace =	22.0
15			18		
16	BoltHolePresent =	True	19	BoltHolePresent =	False
17	BoltHoleDiameter =	12.0	20	BoltHoleDiameter =	12.0
18	BoltHoleDepth =	12.0	21	BoltHoleDepth =	12.0
19			22		
20	TCHolePresent =	True	23	TCHolePresent =	True
21	TCHoleDiameterUpper =	4.0	24	TCHoleDiameterUpper =	5.0
22	TCHoleDiameterLower =	4.0	25	TCHoleDiameterLower =	3.0
23	TCHoleTransitionStart =	0.0	26	TCHoleTransitionStart =	3.0
24	TCHoleTransitionLength =	0.0	27	TCHoleTransitionLength =	4.0
25	TCDepthFromHotFace =	5.0	28	TCDepthFromHotFace =	10.0

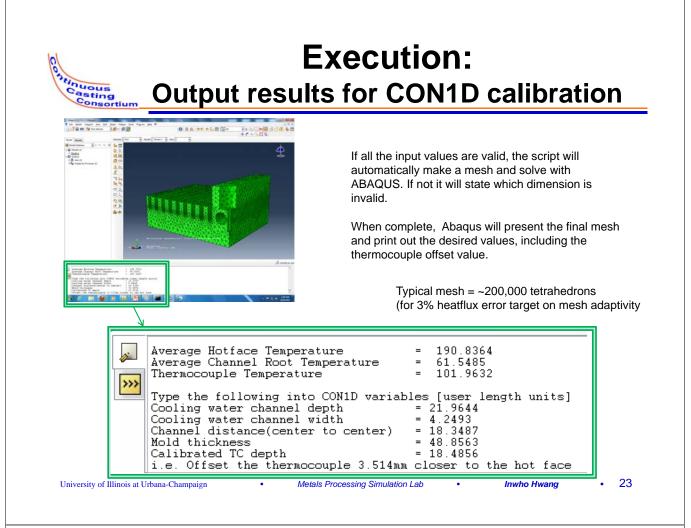

Change the above (red data and blue choices), to match your mold geometry.

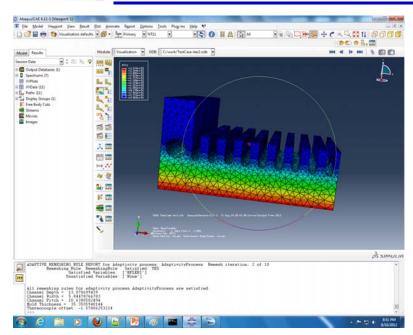
•



tinuous

Execution: mold type specific data




22

Inwho Hwang

Execution: 3D detailed results

Because the OffsetScript creates the mold and analyses the effects of the heat loads, after running the script the user can load the .odb file for further analysis.

remperature Values	s (°C):	Abaqus	Calibrated CON1D	Script Resu
100 120 100 40 40 40 40 40 40 40 40 40 40 40 40 4	Hotface: Coldface: Thermocouple:	190.84 61.55 101.96	191.42 62.09 102.49	1111
$\label{eq:holds} \begin{array}{l} water sides \\ h=45~kW~m^{-2}~K^{-1}~~T_w^{-2.5}~C \\ q=2.5~MW~m^{-2} \end{array} \hspace{0.5cm} \text{bolt hole}$	M. Langeneckert MS ⁻	Thesis Fig 3.16		
317 C bet face 322, C	Hotface: Coldface: Thermocouple:	319.63 86.78 161.85	319.19* 86.36* 161.37*	
$ \begin{array}{c} \mbox{cold face} \\ h=54\ kW\ m^2\ K^4 \\ T_a=35\ C \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	M. Langeneckert MS	Thesis Fig 3.1		and a second sec
Vers David A. et By and A. s. at a state from stated for the state of	Hotface: Coldface: Thermocouple:	238.77 90.06 143.15	238.07 89.28 142.40	
La 142V (+129) Win K	L. Hibbeler MS Th	esis Fig 3.9		

Conclusion

- We have developed a method to calibrate CON1D to have the accuracy of a 3D FEA model
- This is implemented in a user friendly Python Script that will soon be available

- Continuous Casting Consortium Members (ABB, ArcelorMittal, Baosteel, Tata Steel, Goodrich, Magnesita Refractories, Nucor Steel, Nippon Steel, Postech/ Posco, SSAB, ANSYS-Fluent)
- Ron O'Malley, Junya Iwasaki, Melody Langeneckert
- Dassault Systemes (ABAQUS parent company)
- More information:

University of Illinois at Urbana-Champaign MechSE

L.C. Hibbeler, M.M. Langeneckert, J. Iwasaki, I. Hwang, R.J. O'Malley, and B.G. Thomas, "Calibration of Thermal Models of Continuous Casting of Steel." *AISTech 2012*.

Metals Processing Simulation Lab

27

Inwho Hwang